上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
にほんブログ村 科学ブログ 数学へ
にほんブログ村
問 高校数学の基本問題 内接円の半径 《問題3》(2)
三角形ABCにおいて(CA+AB):(BC+CA):(AB+BC)=5:6:7である.
三角形ABCの内接円と外接円の半径の比を求めよ.

この問を解く過程で、オイラーの不等式に出会いました

オイラーの不等式 R ≥ 2r   R : 外接円の半径   
               r : 内接円の半径

三角形には必ず内接円と外接円があります
内接円の半径を r 、外接円の半径を R としたとき、R は必ず r の2倍以上になるという定理です
正三角形のとき、ちょうど2倍になります
三角形がいびつになるほど3,4倍と増えていきます

オイラーの不等式の証明はこちらです(〜エレガントな高校数学の世界の探求〜

以下、上記問題の解法
オイラーの不等式1

オイラーの不等式2

オイラーの不等式3

オイラーの不等式4
関連記事
にほんブログ村 科学ブログ 数学へ
にほんブログ村
Secret

TrackBackURL
→http://recentreport.blog.fc2.com/tb.php/1214-f5ee138c
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。